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Abstract 

We extend the usual treatment of constraints in the canonical formalism to cases where 
the restrictions on the canonical variables take the form of inequalities. The result is a 
general prescription for eliminating such restrictions from the canonical formalism. We 
apply this prescription to eliminate the positivity conditions in a model theory and in 
general relativity. In the case of the model we find that elimination of the positivity con- 
ditions makes the construction of observables much simpler; in the full theory, however, 
the spatial constraints introduce complications, and we have not been able to carry out 
all the calculations explicitly. 

1. Introduction 

The construction of a quantum theory for general relativity through the 
canonical formalism has been stymied by the lack of  a complete non- 
redundant set of  observables (Bergmann, 1962). These observables must be 
invariants, that is, quantities which have vanishing Poisson brackets with 
the constraint generators of  the invariant transformations of  the theory. 
By introducing an intrinsic coordinate system, Komar  has constructed a 
complete set of  observables (Komar,  1958a). These variables, however, are 
not independent, for they must still satisfy the constraint equations. On the 
other hand, K o m a r  has also shown that a complete non-redundant set of  
observables uniquely characterizes the Hamil ton-Jacobi  functional o f  
general relativity (Komar,  1968b). In this case, however, the explicit 
construction has not been carried out. 

We wish to explore the possibility that the solution of  a secondary problem 
associated with the Hamiltonian formalism of Dirac (1958a, 1958b) may 
be a significant step in the construction of observables. This is the problem 
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of incorporating into the formalism the 'possitivity conditions', which are 
most simply expressed by the inequalityt 

gab d xa dx b > 0 V dx a ~ 0 

The positivity conditions require that the initial t = constant hypersurface 
S be spacelike, i.e., that the 3 x 3 matrix {gab} be positive definite. They may 
therefore be regarded as rather complicated nonholonomic constraints in 
configuration space which arise from the physical interpretation of the 
canonical co-ordinates. Klauder & Aslaken (1968) have pointed out that 
such constraints present serious problems in any quantum theory of general 
relativity. They argue that the q-number analogs of the Dirac variables gab 
and p~ cannot serve as the basic co-ordinate and momentum operators in 
Hilbert space, for, in view of the positivity conditions, the spectra of the 
operator analogs of the ga~ are nonphysical. One would like to be able to 
formulate the classical field equations in terms of classical variables which 
identically satisfy the posifivity conditions so that this problem could not 
arise. While such variables will not in general be observables, one might 
hope to learn something about the observables by simplifying the formalism 
in this manner. Here we present our first efforts to carry out this program. 

We begin with a few general remarks on the role of inequalities in the 
canonical formalism. The standard phase space formalism is based on the 
assumption that the canonical variables represent independent degrees of 
freedom of the physical system. Any restrictions on the independence of 
these variables, whether holonomic (e.g., constraint equations) or non- 
holonomic (e.g., inequalities), indicate that in some sense the variables 
themselves are inappropriate. For these conditions imply that part of the 
original phase space lacks physical significance; only the subspace they 
define, the reduced phase space, is of physical interest, 

For any physically acceptable theory the restrictions which appear must 
be consistent with the dynamical equations. In other words, the Hamiltonian 
of the theory must map the reduced phase space onto itself. If this is the 
case, we can lose no physical information by confining our attention ex- 
clusively to the reduced phase space. Whether file constraints are holonomic 
or nonholonomic, it must be possible to remove ~em from the formalism 
by replacing the 'defective' original set of phase space variables with a new 
set of reduced phase space variables 

The positivity conditions in general relativity are not dynamical conditions 
at all; they merely require that we adhere to the geometrical conventions 
we have established. In order to state the initial value problem correctly it is 
necessary to choose the arbitrary functions which appear in the Dirac 
Hamiltonian so as to insure that the positivity conditions are nowhere 
violated. We can therefore introduce canonical variables appropriate to 
the reduced phase space defined by the positivity conditions without losing 

t We take Latin indices to run from 1 to 3 and Greek indices to run from 0 to 3. We 
shall use a signature of-+++ for the space-time metric guy, so that the intrinsic metric of 
the initial t = constant hypersurface has the signature +++. 
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any physically meaningful solutions to the dynamical equations. This is the 
general program we shall follow to eliminate the positivity conditions from 
the Hamiltonian formalism. 

We have emphasized above the similarities between nonholonomic and 
holonomic restrictions on the canonical variables. However, it is important 
to remember that there remain significant differences between the positivity 
conditions and constraint equations in the Dirac formalism. For one thing, 
the positivity conditions do not reduce the number of degrees of freedom in 
the problem: the physical subspace has exactly the same dimensionality as 
the original phase space. This is never the case with constraint equations. 
Furthermore, the positivity conditions do not arise naturally out of the 
requirements for the internal consistency of the Hamiltonian formalism, 
as do the constraint equations. Tile origin of the positivity conditions is 
geometrical, and therefore independent of the formalism itself. These 
differences lead to difficulties if one tries to press the analogy between the 
positivity conditions and the constraint equations too far. 

In the following sections we shall eliminate the positivity conditions, first 
in a simple model theory obtained from the Dirac formalism by imposing 
certain subsidiary conditions, and then in the full theory of general relativity. 

2. El iminat ion o f  the Posi t iv i ty  Conditions in a M o d e l  Theory 

Suppose that  in the Dirac formalism for general relativity we arbitrarily 
restrict ourselves to initial data which satisfies, in addition to the constraint 
equations, the conditions 

gab,c ~ 0 pa~. c ~ 0 (2.1) 
gab ~ ga 3.~ p,b ~ n~ 6 ~b (no sum over a) 

It is not difficult to show that, with the arbitrary functions chosen so that 

go~ = go 6o~, go < 0, go,a = 0 (2.2) 

the initial conditions (2.1) are propagated by the Dirac Hamiltonian. 
Consequently there exists a particular subset of solutions to the empty 
space gravitational field equations which satisfy restrictions (2.1) and (2.2) 
everywhere; these are the well-known Kasner solutions (Kasner, 1921). 

The subsidiary conditions (2.1) and (2.2) reduce the Hamiltonian formal- 
ism of general relativity to a much simpler canonical theory with three phase 
space co-ordinates g~, three conjugate momenta n k, and one arbitrary 
function (-go) 1/2. The simplified theory possesses a single constraint, 

C - (gl nt) 2 + (g2 n2) 2 + (ga ha) z -- 2gl  n lg2  n 2 -2927r293 n a 

-- 2ga ~3 gl  n ~ ~ 0 

which reduces the number of independent degrees of freedom to two. The 
Hamiltonian is 

H -- �89  1 nl) 2 + (g27r2) 2 + (g3 re3) 2 

-- 2ga n l  gz re2 - -  2g2 nZ g3 n a -- 2g3 n3 gt  n 1} ,.~ 0 

3 
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where K 2 - glg2g3, and the positivity conditions take the form 

gk > 0 (2.3) 

Now every function F(g~, ~r ~) defined on the full six-dimensional phase 
space coordinatized by the variables g~, rc k generates a one-parameter family 
of  canonical transformations 

gk ~ gk(2) 

~ _~ ~(,~) 

where gk(2) and rck(2) are solutions to the differential equations 

dgk OF dzr k OF 

d2 8zr ~ ' d2 Ogk 

We definep-observables as those functions F(gk, z~ k) which map the physical 
subspace defined by the positivity conditions (2.3) onto itself. That is, for 
p-observable generating functions 0(g~, ~z~), the initial conditions 

gk(0) - gk > 0 
must imply 

gk(2) > 0 V2 

For instance, according to the above definition, the gk are p-observable 
because the transformations they generate satisfy 

g~ = 0 ~ g ~ ( ~ )  = g ~ ( 0 )  = g ~  > 0 

Obviously this is a special instance of the general rule that all phase space 
functions whose brackets with the gk vanish are p-observable. But the n k 
are not p-observable, because they generate the transformations 

gl = 6t k gl(),) = gl(0) + 2 6l k 

which give gg(2)< 0 for 2 <-gk(0).  Finally, consider the product gl n~. 
We have 

g~ = g~ => g~(2) = g~(0) e x > 0 V2 

g2 = 0 ~ g2(2) = g2(0) > V2 

g 3  = 0 ::> g3 = g3 (0 )  > 0 V,~, 

Hence ga ~ is p-observable. Similarly, g27rz and g3 n3 are p-observable. 
A short discussion of  the properties of p-observables, which are in some 

respects rather surprising, will be found in the Appendix. 
Thep-observables defined above play a role analogous to that of ordinary 

observables (orfirst-elass quantities) in the presence of constraint equations 
(Bergmann & Komar, 1962). A complete set of p-observable canonical 
variables spans the reduced phase space defined by the positivity conditions. 
These reduced phase space variables must satisfy the positivity conditions 
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identically. For if the positivity conditions restricted the range of any one of 
them, its canonical conjugate would not be p-observable, contrary to our 
assumption. Consequently, by introducing a set of canonical variables which 
are all p-observables, we can eliminate the positivity conditions from the 
formalism. 

The simplest way to carry out this procedure in the present case is to 
replace the momentum variables n t, n 2, and n 3 with the p-observable vari- 
ables p~ -- g~ n ~, p2 = gzTr2  and p3 = g3n3, and the co-ordinates gk with the 
p-observable canonical conjugates of the p~, qk = lngk. Conditions (2.3), 
which may now be written as 

gk = e qk > 0 

are automatically satisfied and so may be ignored. Since the positivity 
conditions are preserved by the dynamical equations of our model, no 
physical information is lost when we replace the restricted gk, nk variables 
with the unrestricted qk, pk variables. 

The introduction of p-observable canonical variables results in a sub- 
stantial simplification in the form of the Hamiltonian: 

H = �89 I/z K-'{(pl)  2 + (p2)2 + (p3)2 _ 2plp2 _ 2p2p3 _ 2p3p~} ~ 0 

where lnK 2 = q~ + q2 + q3. 
We can simplify the Hamiltonian still further by means of a linear trans- 

formation which preserves the p-observable character of the basic canonical 
variables: 

- ~ 3  (ql + q2 + q3) QI 

Q2 -= ~ 3  (ql + q2 - 2q3 

Q3 = �89 + q~) 

i I :~ 
= 

p3 =p2 _ p l  

H =  �89 exp ( - - ~  - Qx ) {(PZ)2 + (p3)2 - ( P1)2} ,~ O 

We shall not pursue the above analysis further, for Misner (1969) has 
discussed this theory, as well as other similar model theories, in great detail. 
The important point here is the following. The requirement that the basic 
canonical variables be p-observables has ted in a natural way to a new 
formulation of the model theory which is considerably simpler than the 
original one. The elimination of the positivity conditions has resulted in the 
simplification of the constraint equation as well. Consequently the con- 
struction of the ordinary observables of the theory is now a much simpler 
task; indeed, it is almost trivial. As far as the model theory is concerned, at 
least, the elimination of the positivity conditions constitutes an impor- 
tant  step toward the construction of a complete set of nonredundant 
observables. 
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3. Elimination o f  the Positivity Conditions in General Relativity 

We now wish to apply the above program to the Hamiltonian formalism 
for general relativity. To do so we must construct a complete set of p- 
observable canonical variables on the physical subspace of phase space 
defined by the positivity conditions. This in itself is not very difficult, for 
many such sets of variables exist. But if we wish to achieve any real simplifi- 
cation by eliminating the positivity conditions, we must take care not to 
destroy the manifest spatial covariance of the Dirac formalism. Suppose, 
for instance, that we replace the gab with the logarithms of the eigenvalues of 
the 3 x 3 matrix {gab} together with three additional variables which charac- 
terize the unitary transformation that diagonalizes {gab}. In this way, by 
direct analogy with our work on the model, we could eliminate the positivity 
conditions. But this decomposition of {g,b} is not spatially covariant, and 
as a result it leads to expressions for the spatial constraints ~ ~ 0 which are 
grotesquely complicated. Alternately, one might set co-ordinate con- 
ditions which require the off-diagonal elements of {gas} to vanish, and 
introduce the logarithms of the diagonal elements of {gab} as canonical 
variables. Here again the analogy with our work on the model is dear. But 
in general it will not be possible to propagate the co-ordinate conditions 
off S, and this approach will break down. In what follows we shall present 
one method for eliminating the positivity conditions which preserves the 
manifest spatial covariance of the formalism and so is free of these defects. 

We begin by replacing the Dirac configuration space variables g.b with 
the 3-scalars defined by 

~aB = cta r ~B.s e,S A = 1,2, 3 

where the ea(grs) are three independent 3-scalar functions of the three- 
dimensional Riemannian tensor. The ~aB are just the contravariant com- 
ponents of the metric tensor of S given in the intrinsic co-ordinate system 
defined by the a a. (We assume that the ea are chosen so that I a,I ~ 0 at 
each point of S.) Consequently the positivity conditions now require that 
the 3 x 3 matrix of the V An be positive definite. The momentum densities 
conjugate to the 7aB are given by 

f fg'ab as,-3 , PaB = ~ P  a x 

At this point there are many different sets of p-observable canonical 
variables that we may introduce in place of the yah and PAB. Perhaps the 
simplest such set is the one directly analogous to the first set proposed above, 

QaB ___ {Q}A~ = {in V}an 
a~ Rs 

Here {Q} and {~} represent 3 x 3 matrices. The Qa~, as defined above, 
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transform as 3-scalars on S; the PAB transform as spatial scalar densities of  
weight one. Consequently the spatial constraints assume the form (Klotz, 
1972) 

,.~ ~ = QaB ~ P AB ,.~ 0 

The remaining constraints depend on the explicit functional form of the 
intrinsic spatial co-ordinates: 

~r L = . ~  L( Qan, PAn) ,~, 0 

It is clear from what we have said previously that the positivity conditions 
impose no restrictions on the variables QAB, PaB. 

4. Summary  and Conclusion 

In a simple model theory based on general relativity, we have seen that 
the elimination of  the positivity conditions is a considerable help in the 
construction of  the independent observables. It is not clear whether this 
procedure, when extended to general relativity, is as useful for the construc- 
tion of observables as it is in the model theory. The spatial covariance of the 
full theory introduces complications which we did not encounter in the 
model. While we have eliminated the positivity conditions and simplified 
the form of the spatial constraints, we have not been able to obtain an 
explicit expression for ~ L .  The new canonical variables QA~ and PaB are 
not, as in the model, simple algebraic functions of  the metric tensor, but 
depend on at least the third derivatives of the gab. Therefore, the formal 
simplification we have achieved is deceptive. Although we are farther along 
than Komar  (1958), the remaining task seems to be insurmountable. It 
appears that the natural starting point for the canonical quantization 
program for general relativity is the fully reduced phase space defined by 
both the positivity conditions and the constraint equations. However, we 
must conclude that there is at present no satisfactory method for construct- 
ing the canonical variables of this fully reduced phase space explicitly. 
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APPENDIX 

Some Simple Properties o f  P-Observables 

We first consider p-observables within the context of  the model theory. 
I f  01 and 02 are p-observables, then their sum d71 + 02 must also be 
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p-observable. For if the transformations generated by 61 and r indi- 
vidually preserve the conditions 

gk > 0 (A.1) 

then the (product) transformation generated by 61 + 62 must also do so. 
Furthermore, if 6t and 62 are p-observables and 

[01, 05] = 0 (A.2) 

then 61 62 is p-observable. For suppose that 61 and 62 are independent 
functions of the canonical variables. Then (A.2) implies that by means of an 
appropriate canonical transformation we can introduce 61 and 62 as 
canonical momenta. The assumption that 61 and 62 are individually 
p-observable implies that independent changes in the conjugate co-ordinates 
QI and Q2 preserve (A.1). Consequently the simultaneous changes in QI 
and Q2 generated by the product 6~ 62 must preserve (A.1). That is, 6162 
is p-observable. On the other hand, if r = F(6~), we introduce 61 as a 
momentum variable. Since 61, 62 and ~P~ 62 generate changes in the con- 
jugate co-ordinate QX, the result that ~ 0 2  is p-observable follows im- 
mediately from the assumption that 6~ and 62 are p-observable. This 
completes the proof of our assertion. 

Strangely enough, however, it turns out that the product of two arbitrary 
p-observable phase space functions is not necessarily p-observable. We have 
already seen a simple example of this: (gl) -~ and gl rc~ are bothp-observables 
but their product n~ = [(gi) -1] [g~ ~i] is not. Conversely, it is quite possible 
to write a p-observable quantity as a product of two functions which are 
not themselves p-observables. For instance, 

1 = ( ~ 1 ) ( ~ 1 ) - 1  

Neither rc ~ nor its inverse are p-observable, but their product dearly is. 
The concept of p-observables can obviously be extended to more general 

phase space inequalities than (A.1). Since the above arguments are inde- 
pendent of the specific form of conditions (A. 1), the properties of p-observ- 
ables that we have deduced are quite general. 
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